
POLICY BASED ROUTING:
CONCEPTS AND LINUX
IMPLEMENTATION

Advanced routing scenarios

What is wrong with “standard” IP
forwarding?

§  The IP forwarding algorithm selects the route
according to the destination in the IP packet header

§  All traffic sent to the same destination (or destinations,
in general: address/mask) will take the same route

§  What if, for any reason, a portion of traffic addressed
to the same destination(s) – but meeting some
different criteria - needs to take a different path?
–  First “simple” example: real time traffic and background

traffic have different service requirements and we might
benefit from separating such types of traffic by forcing
different paths. More later on…

§  You may say, why don’t we aggregate traffic meeting
the same criteria by using different multicast
addresses?
–  FORGET MULTICAST if not in a local scenario!

What I can’t do..
§  What if I liked to take different routing

strategies according to different purpose
(besides the different destinations)?

§  For example, I’d like to differentiate routing
according to:
– Source address (different (V)LAN attached to the

same router)
– Type of traffic (real time, delay tollerant, mission

critical, etc…)
– Size of the packet
– Application protocols
– And so on….

Example: multi-home/multi-provider
access router

Access Network

3G

WiFi

DSL

gw3G

gwWiFi

gwDSL

Type of traffic Next hop Iface
Real Time gwDSL DSL

WEB traffic up to 2GB gw3G 3G

All from boss VLAN gwDSL DSL

Critical gwDSL DSL

P2P traffic gwWiFi WiFi

Remaining traffic gwWiFi WiFi

3 different access links (not very real scenario J)
DSL – hi reliability; flat, 1 Mbit/s
3G – medium reliability; expensive over 2 GB; 4 Mbit/s
WiFi – low reliability; free; 500 Kbit/s

How could I do the forwarding listed on the right with
standard routing? Can I aggregate routes per destination?
NO! I should have the possibility to manage different rtables!

Solution: Policy Based Routing
§  Routers can be configured with different policies that selectively

cause the packets to take different paths
§  With PBR routers’ IP/TCP stack manages multiple routing tables
§  The specific table to be looked up is selected by a set of rules (or

policies) configured by administrators
§  The table selection is performed before the routing entry look-up
§  Once the right table is selected, the forwarding algorithm goes on as

in “standard” IP forwarding (i.e.: longest prefix match per-destination
look-up)

§  Policy description varies from OS to OS. In general we can take into
account
–  Source addresses, ip.tos field, ip.protocol field, length, transport ports,

more complex (implementation dependent) internal tagging system
–  Ex: traffic from the engineering department always take route1, real time

traffic takes route2, traffic with len > 1500 takes route3, and so on…

PBR Benefits
§  Source-Based Transit Provider Selection: Internet service providers and

other organizations can use policy-based routing to route traffic originating
from different sets of users through different Internet connections across the
policy routers

§  Quality of Service (QOS): Organizations can provide QOS to differentiated
traffic by setting the precedence or type of service (TOS) values in the IP
packet headers at the periphery of the network and leveraging queuing
mechanisms to prioritize traffic in the core or backbone of the network

§  Cost Savings: Organizations can achieve cost savings by distributing
interactive and batch traffic among low-bandwidth, low-cost permanent
paths and high-bandwidth, high-cost, switched paths

§  Load Sharing: In addition to the dynamic load-sharing capabilities offered
by destination-based routing that the Cisco IOS software has always
supported, network managers can now implement policies to distribute
traffic among multiple paths based on the traffic characteristics

§  Performance Improvement: in case of links with different MTUs, packets
can be selected according to the their length, so to avoid fragmentation

PBR in access routers
§  PBR is useful for both access and core networks
§  Due to the nature of this course, we’ll use PBR in scenarios with routers with

multiple access links
§  Here’s the reference lab: Lab7-pbr (just router’s next hop addresses are shown)

link_fast

INTERNET
LAN A

10.0.0.0/24

router

pc1

10.0.0.100

default GW: r2
via link_fast

eth0
link_slow

r2
eth2

eth1
eth0

(TAP)

eth1: 1.0.0.2
eth2: 2.0.0.2

eth3

eth2pc2

10.0.0.101

eth1
pc3

pc4

10.1.0.101

10.1.0.102

LAN B
10.1.0.0/24

r3

lin
k_

med
ium

eth0
eth1

eth3

3.0.0.2

eth4

default GW: r2

Note about link bandwidth
emulation

We approximately emulated the network bandwidth with NETFILTER and the
limit module.

link_slow is limited by putting a limit rule (80 packets/second, burts 5) in
FORWARD for packets with both input and output interface set to eth2.

Similarly, we set 800 packets/second with burst 150 for packets coming/going
from/via eth4 for link_medium emulation.

We didn’t do anything for link_fast.

Anyway, this approach is really naïve and superficial. We could have used TC
and the NETEM module to have better control over the queuing disciplines. We
considered this approach out of the scope of this course. For any further info
take a look at the two following links:
http://tldp.org/HOWTO/Traffic-Control-HOWTO/
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem

PBR and Linux
§  Linux supports policy based routing. Set the following kernel configuration

symbols
–  IP_ADVANCED_ROUTER=yes
–  IP_MULTIPLE_TABLES=yes

§  With the symbols above the kernel is ready to
–  Manage (modify, create, delete) multiple routing tables (other then the default ones)
–  Specify policies pointing to one of the multiple tables

§  Routing tables are defined in:
/etc/iproute2/rt_table!

§  The policy routing system is managed with iproute2 (ip rule, ip route)

marlon@marlon-vmxbn:~$ cat /etc/iproute2/rt_tables !
255!local!
254!main!
253!default!
0 !unspec!
!
marlon@marlon-vmxbn:~$!

The tables above are the default tables used by the kernel. When you don’t
specify the table for rule insertion, you are implicitly using the default table

Dumping the routing tables

ip route show table “table_name”!
root@marlon-vmxbn:/# ip route show table main!
default via 172.16.166.2 dev eth0 proto static !
169.254.0.0/16 dev eth0 scope link metric 1000 !
172.16.166.0/24 dev eth0 proto kernel scope link src 172.16.166.156 metric 1!
 !
root@marlon-vmxbn:/# ip route show table local!
broadcast 127.0.0.0 dev lo proto kernel scope link src 127.0.0.1 !
local 127.0.0.0/8 dev lo proto kernel scope host src 127.0.0.1 !
local 127.0.0.1 dev lo proto kernel scope host src 127.0.0.1 !
broadcast 127.255.255.255 dev lo proto kernel scope link src 127.0.0.1 !
broadcast 172.16.166.0 dev eth0 proto kernel scope link src 172.16.166.156 !
local 172.16.166.156 dev eth0 proto kernel scope host src 172.16.166.156 !
broadcast 172.16.166.255 dev eth0 proto kernel scope link src 172.16.166.156 !
!
root@marlon-vmxbn:/# ip route show table default!
!

Exactly like when didn’t know anything about PBR…
we just added table “table_name”!

Managing new tables
To add a table just enter a line in /etc/iproute2/rt_tables formatted as:
“Index TableName”
Be sure not to use an index already used. The order in not important
For example:
!
root@marlon-vmxbn:/# echo “200 test” >> /etc/iproute2/rt_tables!
!

Now we have a new routing table called “test”. How do we add routing entries to
this table?
Just use “ip route add|del” as usual, but append the directive “table test”.

For example ($ADDR has to be compatible with the NIC addresses):
!
root@marlon-vmxbn:/# ip route add default via $ADDR table test!
!
root@marlon-vmxbn:/# ip route del default table test!
!

How do I force traffic to select a
given routing table?

I.E.: how do I set the forwarding policies?
It’s time to set up the policies pointing to the new table.
To do so, we use the ip tool “rule”.
Let’s say we want force all traffic from address 10.0.0.23 to follow the table “test”

!
root@marlon-vmxbn:/# ip rule add from 10.0.0.23 table test!
!

From this point on, all packets with ip.src == 10.0.0.23 will be forwarded
according to the routing table “test”

Let’s say, we want to do so also for packets with ip.tos 3:

!
root@marlon-vmxbn:/# ip rule add tos 3 table test!
!

Is there a order for rule verification?
Yes
Every rule has a priority (parameter “pri” in the command “ip rule” – in
the previous example it was added automatically). The rule database is
scanned in order of increasing priority.

Let’s dump the policy database

0: !from all lookup local !
32763:!from all tos reliability lookup test !
32764:!from 10.0.0.23 lookup test !
32766:!from all lookup main !
32767:!from all lookup default !

Let’s add another rule between the 2nd and the 3rd

root@marlon-vmxbn:/# ip rule add iif eth0 pri 32765 table
test!

which it will be applied to packet received from interface “eth0”

Some details omitted before…
At startup time the kernel configures the default RPDB consisting
of three rules:

1.  Priority: 0, Selector: match anything, Action: lookup routing

table local (ID 255). The local table is a special routing
table containing high priority control routes for local and
broadcast addresses. Rule 0 is special. It cannot be deleted
or overridden.

2.  Priority: 32766, Selector: match anything, Action: lookup
routing table main (ID 254). The main table is the normal
routing table containing all non-policy routes. This rule may
be deleted and/or overridden with other ones by the
administrator.

3.  Priority: 32767, Selector: match anything, Action: lookup
routing table default (ID 253). The default table is empty.
It is reserved for some post-processing if no previous default
rules selected the packet. This rule may also be deleted.

ip rule (simplified) usage
ip rule add - insert a new rule
ip rule delete - delete a rule

from PREFIX: select the source prefix to match.
to PREFIX: select the destination prefix to match.
iif NAME: select the incoming device to match. If the interface is loopback, the rule
only matches packets originating from this host. This means that you may create
separate routing tables for forwarded and local packets and, hence, completely segregate
them.
oif NAME: select the outgoing device to match. The outgoing interface is only available
for packets originating from local sockets that are bound to a device.
tos TOS: select the TOS value to match.
fwmark MARK: select the fwmark value to match. priority PREFERENCE the priority of
this rule. Each rule should have an explicitly set unique priority value. The options
preference and order are synonyms with priority.
table TABLEID: the routing table identifier to lookup if the rule selector matches. It is also
possible to use lookup instead of table.

ip rule flush - also dumps all the deleted rules
ip rule show - list rules

PBR simple set-up
Specification
Traffic from LAN A à link_slow
Traffic from LAN B à link_fast
Traffic from LAN A, host 10.0.0.101 à link_fast

Suggested workflow
1)  Define how many tables we need
2)  Add and configure any extra routing table
3)  Set the policies pointing to any extra table (attention to the

rule priorities!!!)

Solution in file: Lab7-pbr/router/root/pbr1.sh

Solution

!
echo "200 link_slow" >> /etc/iproute2/rt_tables!
!

ip route add default via 1.0.0.2 table link_slow!
!
ip rule add pri 30000 from 10.0.0.101 table main!
ip rule add pri 30001 from 10.0.0.0/24 table link_slow!
!

1)  We need just one extra table as the default route is already via
“link_fast” in the main table. Let’s create 1 table called
“link_slow”

2)  We need just the default route in table “link_slow” via 1.0.0.2
3)  We need two policies (rule a with higher priority – i.e.: lover pri

parameter):
a.  Packets from 10.0.0.101 look up table “main”
b.  Packets from 10.0.0.0/24 look up table “link_slow”

Advanced netfilter/PBR interaction
§  It looks like Linux PBR implementation is very limited as you can just

consider source address, tos and incoming/outgoing interfaces….
§  ….WRONG! You can combine the netfilter MARK with PBR rule

definitions
§  In other words, you can MARK packets in any possible way

NETFILTER allows you to do and then select the proper routing
policy by specifying the “fwmark” parameter

§  Example: forward DNS packet over the slow link
–  With NETFILTER we can mark DNS packets with 100 (mark in

PREROUTING)
–  With “ip rule” we select packets marked with 100 to look up link_slow

table

!
router# iptables -A PREROUTING -t mangle -p udp --dport 53
-j MARK --set-mark 100 !
!
router# ip rule add pri 29000 fwmark 100 table link_slow!
!

PBR complex set-up
Specification (with this priority order. i.e.: the first
matching rule wins!)
DNS traffic à link slow
SSH traffic à link fast
TCP traffic with dports 40000:40100 à link_medium
Traffic from host 10.0.0.101 à link_medium
WEB traffic à link medium
Traffic from LAN A à link_slow
Traffic from LAN B à link_medium

Solution
§  There are several solutions. The following

this approach (in Lab7-pbr/router/root/
pbr2.sh) is the first that came into my mind. It
can be improved...
–  3 marks: 1àslow, 2àmedium, 3àfast
–  2 tables: link_slow, link_medium (link fast is

covered by the main table)
– Mark everything with NETFILTER (keep the same

order as in the spec)
– To avoid multiple matching rules, always check if

the packet is already marked

Solution
#create the extra tables!
echo "200 link_slow" >> /etc/iproute2/rt_tables!
echo "201 link_medium" >> /etc/iproute2/rt_tables!

!
#add the default routes to the new tables!
ip route add default via 1.0.0.2 table link_slow!
ip route add default via 3.0.0.2 table link_medium!
!
#add the routing policies. This time I don’t care about the order, as
netfilter will take care of the required priorities !
ip rule add pri 20000 fwmark 1 table link_slow!

ip rule add pri 21000 fwmark 2 table link_medium!
ip rule add pri 22000 fwmark 3 table main!

Solution
#set ENV variables!
SLOW=“-j mark --set-mark 1”!
MEDIUM=“-j mark --set-mark 2”!
FAST=“-j mark --set-mark 3”!
!
#set the netfilter rules!
iptables -A PREROUTING -m mark --mark 0 -p udp --dport 53 $SLOW!
iptables -A PREROUTING -m mark --mark 0 -p tcp --dport 22 $FAST!
iptables -A PREROUTING -m mark --mark 0 -p tcp -m multiport --dports
40000:40100 $MEDIUM!
iptables -A PREROUTING -m mark --mark 0 -s 10.0.0.101 $MEDIUM!
iptables -A PREROUTING -m mark --mark 0 -p tcp -m multiport --dports 80,433
$MEDIUM!
!
#the last two policies (from LAN A and LAN B) can be configured with ip
rule “from” selector, with priority lower than the “fwmark” rules!
ip rule add pri 23000 from 10.0.0.0/24 table link_slow!
ip rule add pri 23001 from 10.1.0.0/24 table link_medium!
!

Homework

§  Create an access router with 3 links
§  Forward with a round robin approach

every new “connection” (for the contrack
module) over the available links

§  Create the LAB and the required scripts

