PKI, X.509 CERTIFICATES AND
HTTPS WEBSERVERS

Public Key algorithms, digital certificates and PKI

PRELIMINARIES

Symmetric/Asymmetric cryptography

m p The encryption and decryption keys are the
same or can be directly derived from each

"—.—” other. Both keys are kept secret.
Examples: 3DES, AES, Blowfish, RC4

CpherText

sym metrlc

asymmetric

Encryption/decryption keys are different
and it is computationally unfeasible to
derive them from each other.

The encryption key be distributed, the
other has to be kept secret.

For this reason it is also called Public Key

cryptography.
Examples: RSA, Diffie-Hellman, EIGamal

Public Key cryptography:
encryption/decryption

B

Alice wants to send a message
M encrypted for Bob

L

Gets Bob’s public key B, , .
(Somehow) verifies B,,,,, authenticity Alice sends C to Bob
Encrypts M with B, ,> C = F(B,,,, M)
Decrypts C with Bob’s private key B,;,
M=F (Bpriv’ C)
Note:

1) Only Bob can decrypt C
2) Nobody “can” derive B, from B,
3) This procedure can be inverted to implement a digital signature

Public Key cryptography:
digital signature

Ny Y Alice wants to sign a message
A A M so that Bob can verify its
«/ y N authenticity

e 4
‘ an
> T
\" o
&

Gets his own private key A, Alice sends (H(M), S) to Bob >

Computes a hash of the message H(M)
Signs H(M) with A, > S = F(A,,,, H(M))

Computes a hash of the message H(M)
Verify the signature by verifying the following:
H(M) = F(Apu, HM)) ?
Note:
1) Only Alice can sign M
2) Nobody can modify M and compute a valid signature S without knowing A,
3) Alice can include a nonce (given by Bob) in the signature to avoid a third entity to reuse
the same signature for the same message M

RSA: key generation

Extract two “big” prime numbers p e g (random, secret)
Compute the RSA modulus: N=p x q
Compute @(N) = (p - 1)(q - 1) (Eulero’s function)

Randomly generates the the number e: 7 < e < ®&(N)
relatively prime to @&(N)

Compute the number d: e xd = 1 mod ®(N), or in other
words e is the inverse of d in the group @(N)

PUBLIC KEY: (N, e)
PRIVATE KEY: d
Must be kept secret: p, q, D(N), d

o ~OLODN-=

Note:
1) to derive d from e an attacker should compute €' in ®(N)
2) ®(N) is the number of integers less than or equal to n that are relatively prime to N
2.1) to compute ®@(N) an attacker should know p and q (otherwise it’s unfeasible)
3) it is computationally unfeasible to factorize the product of two “big enough” prime numbers

RSA tranformations

RSA transformation is simply a modular exponentiation with
respectively the public private key

ENCRYPTION DECRYPTION
X = X’modN = Y =Y mod N —> X
ciphertext
SIGNATURE VERIFICATION

X = XmodN ™ Y =™ Y°mod N —> X

signed text

® 00

RSA with mathematica

* Running...Untitled-1

In[1)=

outlt]=

In2):=

Out[2]=

In[3]:=

Outf3)=

In[4]:=

Outfd)=

In[5]:=

Out[s}=

In[6):=

Outlé)=

In[7)=

Out[7]=

In[8]:=

Outfg)=

In[8]:=

outfgl=

In[10):=

Out[10]=

p = RandomPrime[2"512]

2342430759282247717650530181442040148673740046224514240856555364140631652042275569677372175777643111127433662545776110566305759926789973381458462356406

213

q = RandomPrime[2°512]

1139470330073101760388131330594903773840813370432508808717960489897996311831461021155156382389908783099506649014761011252607 146489100588 660943874 346780

073

notulus - pe RSA module

2669130350452 72N182063835862865607735978023901060441442342416090624307559409655892362 353654564 779567445360232206556605069861836487142629732068612936756°

150502811943955978647 301496 045479557387 455394037459573774312059788171027814767026 185433055897 896554087437210307755703337677522979849969757560311460561"
793549

fi=(p-1)*(gq-1)

2669130350452729182063835862865607735978023901060441442342416090624307559409655892362353654564779567445360232206556605069861836487142629732068612936756

147020910854 600629 169262834533442613464940840620802550724737543934132399850893289594600527339729002193210269996195166215858610073434079195517909123858"

public exponent

e = RandomPrime [£fi]

2497866473138812645967°318818461569127845371761779831255436577553432312858979912753436202297826309194174838999837833475322744535994579071358422568471386

055193496782849807469672565993023048820741289696023243036651937329763085482734879427987148237524646468071545495884396228570332929234004825581021576545-
512919

a = powerHodle, -1, £1] (ine"(1)med £i1) private key

2484969694 028556821477264583951858707 79 NL54570202655578547129182001696777070080395759331783228045776870244264768084983417145524185119541586052748536186

167201509544 899265552472077038073309382418373342132620473143977354844412628875534029334182601183175087298870183082118475580169090229003899344327861287
919 847

plain = 1667 850607 (+«ciao in ASCII«)
1667850607

ctext = PowerMod [plain, e, modulus] (+'ciao” " (e) mod N)«) encryptlon

922434998406 953366807 700047504 982848 322071666583 93438N443571567 024586729727 798269577919685285315044505291888826840599687014292035599697290536071179679
527 783660439233687557184020635918156792381744158925620447423502375549530296383535404343526925321058097632806650379230929687424573796837214680877217003:

295496 ®no Activity Monitor

(»decifriamo elevando alla dx) d t. . @ 3 All Processes /a
res = PowerMod [ctext, d, modulus] . eCl y p Ion [J
Quit Process Inspect Sample Process
1667850607 PID Process Name User Real
£fi = EulerPhi [modulus] (#non ce la fara,dovrd abortires) | 6;;21 . sl Sl mar:on :
4 & VIC marlon 1.
$Aborted 30629 Google Drive marlon ¢

...not exactly the real algorithm, but the concepts are the same!

Diffie-Hellman Key exchange alogorithm

Public: o, p GOAL: exchange a common secret

S _ that only Alice and Bob can derive
ecret: x, y

o*modp
Random x ~ ovmod p
COMMON KEY
K = (a¥)*mod p K = ()Y mod p
Note:

1) Common secret number exchanged with an asymmetric algorithm

2) to compute K from (¥ mod p) and (o mod p) an attacker should be able to compute the
discrete logarithm x = log,, (e mod p) and y = log,, (o mod p)...

3) ...which is computationally unfeasible for an attacker with “limited computational resources”

How does Alice obtain Bob's public key?

Everything’s perfect, you believe that nobody can break the
public key algorithms if the numbers are “big enough”

How are the public keys distributed?

— In a network with n nodes, n(n-1)/2 keys have to be distributed!

— What if my private key is lost or stolen? Should | need to notify
all the remaining (n-1) nodes to revoke my public key?

— Solution: centralized or opportunistic distribution! (obvious, the
public key don’t have to be kept secret!)

OK, the scalability issue is solved, but how can | be sure that
a public key is authentic? How can Alice get the public key of
Bob and be sure that it's really his?

SOLUTION:

— Atrusted third party that issues some kind of proof that a public
key is really related to a given identity

Public Key Certificate

= A public key certificate is a data structure
that binds a ?Uth key (and therefor the
related private key) to the the identy of the
legitimate owner < CERT 5:{ID, Pub}

= The binding between {ID, Pubm% is granted
%)éaR j[l_ruste certification authority that signs
ID

= Provided that we have the CA’s public key,
we can verify the CA signature and therefor
verify the public key authenticity

EXAMPLE:
CA issues a public certificate for bob CERT,,
CERT,,, contains:

1) Puby,,

2) CA identity CA,

3) CA signature of CERT,,

Once | have the authentic Pub,,, Ig_ust need to
verify that the party I'm communicating with is
actually Bob (i.e.: it has the private key)

To do so, | perform a simple challenﬁe/response
mechanism. | extract a nonce and ¢

is authentic, and Bob couldn’t know the random
number, only the real Bob can sign the nonce
correctly (and | can verify it)

. . i allenge Bob |
to sign this random number. Since the public key &

CERT,,,

- | trust CA and | have CA’s public key
- Verify CA signature CERT,_, = OKI
- Pub,, is authentic

- | can encrypt a message for Bob

Challenge/Response concept

CERT,,,

OK, the certificate is authentic..

@ Let’s see if you have the priv key
ﬁ«@ Sign this RAND!

alice RAND giice

—

Signed(RAND

aIice)

OK noprob!
(RA ND alice) priv

OK, I have Bob’s public key and RAND
| can verify Bob’s signature

alice,

Public Key Infrastructure

= A PKI consists of the protocols, the policies and the
cryptographic mechanism used to manage the
management of public key certificate

— Creation, distribution, revocation, etc...
= A PKI requires the definition of:
— Certificate format

— Relationship among CAs

— Mechanisms and policies for issuing and revoking
certificate

— Storage services

= Typical certificate format: X.509

X.509 format (high level)

Version, Validity,
Serial Number, and others..

CA ldentity

Subject ldentity

Subject Public Key

CA Siganture

X.509 certificate: real example

Certificate Viewer: www.facebook.com

facebook.

marlon@ubuntu:~/Desktop$ openssl x509 -in www.facebook.com

----- BEGIN CERTIFICATE-----
MIIGMjCCBRqgAWIBAgIQDG/IWVT6H1/JZyyf51zb5jANBgkqhkiGOwOBAQUFADBM
MQswCQYDVQQGEwJVUzEVMBMGATUEChMMRG1naUN1cnQgSW5 jMRkwFwYDVQQLEXB3
d3cuZGlnaWNlcnQuY29tMSUWIwYDVQQDExxEaWdpQ2VydCBIaWdoIEFzc3VyYW5]
ZSBDQS0zMB4XDTEWMTEXNTAWMDAWMFOXDTEZMTIwMjIzNTk10VowajELMAKGATUE
BhMCVVMxEzARBgNVBAgTCkNhbG1mb3JuaWEXE jAQBgNVBACTCVBhbG8gQWx0bzEX
MBUGATUEChMORMFjZWJvb2ssIEluYy4xGTAXBgNVBAMTEHd3dy5mYWN1Ym9vay5j
b20wgZ8wDQYJKoZIhvcNAQEBBQADEYOAMIGJAOGBAMHT fWNBvcTk+mUZE3jVYjeW
p2HzsZa/I1466h6ftB/neLeuox7ytd6ZejQMDNUNNI9Dxq2byty4zFr4mD11BFn//
twCe+gb6ZFWxSGtcKxq375AciP9sEpLZppe3Wh7aIxYP16Maz/8A0H52jhXDtonYU
e3A+77BCCzjWggAj3WN1AgMBAAG]ggNaMIIDVjATBgNVHSMEGDAWEBRQ6N0J2yn7
EI+e5QEg1N55mUiD9zAdBgNVHQ4EFgQUqldKM7bs 1W6BE6Y2XVR7Q1jzj0QwKQYD
VRORBCIWIIIQA3d3LmZhY2Vib29rLmNvbYIMZmFjZWJvb2suY29tMHsGCCsGAQUF
BWEBBG8wbTAkBggrBgEFBQcwAYYYaHROcDovL29jc3AuZGlnaWN1cnQuY29tMEUG
CCsGAQUFBzAChjlodHRwWOi8vY2FjZXJ0cyS5kaWdpY2VydC5jb20vRG1lnaUNlcnRI
aWdoQXNzdXJhbmN1QOEtMy5jcnQwDgYDVROPAQH/BAQDAgWgMAWGA1UdEWEB/WQC
MAAWZQYDVROfBF4wXDAsoCqgKIYmaHROcDovL2NybDMuZGlnaWNlcnQuY29tL2Nh
MyOyMDEwaS5jcmwwLKAqoCiGJmhOdHA6LY9jcmwOLmRpZ21jZXJOLmNvbS9jYTMt
MjAxMGkuY3JsMIIBxgYDVROgBIIBvTCCAbkwggG1BgtghkgBhv1sAQMAATCCAaQw
0gYIKwYBBQUHAgEWLmMhOdHA6LY93d3cuZGlnaWNlcnQuY29tL3NzbC1jcHMtcmVw
b3NpdG9yeS50dGOwggFkBggrBgEFBQcCAjCCAVYeggFSAEEAbgBSACAAAQBZAGUA
TIABVAGYATABOAGgAaQBzACAAQWB1AHIAdABpAGYAaQBjAGEAdABIACAAYWBVAG4AA
cwBOAGKAdAB1AHQAZQBzACAAYQBjAGMAZQBWAHQAYQBUAGMAZQAZAGBAZgAgAHQA
2aAB1ACAARABpAGCcAaQBDAGUAcgBOACAAQWBQACBAQWBQAFMAIABhAG4AZAAgAHQA
aAB1ACAAUgB1AGWAeQBpAG4AAZWAgAFAAYQBYAHQAeQAgAEEAZWBYAGUAZQBtAGUA
bgBOACAAdWBOAGKAYWBOACAAbABpAGOAaQBOACAAbABPAGEAY gBpAGwWAaQBOAHKA
TABhAG4AZAAgAGEAcgB1ACAAaQBUAGMAbwBYAHAAbwBYAGEAdABLAGQAIABOAGUA
cgB1AGkAbgAgAGIAeQAgAHIAZQBmMAGUACgB1AG4AYWB1AC4WHQYDVRO1BBYWFAYI
KwYBBQUHAWE GCCsGAQUFBWMCMAOGCSqGSIb3DQEBBQUAA4IBAQAIM16QP60C/ t6S
0p4S9+8Wan26ZqBarmZ2vEoSE+0S1vcP1LwB1SDo8P2sZt4kGK/uor9fo+xectYg
GtLGjwcNev+1j30Hf06ZgQBqjYCnjcAAFsUd2AY39+wD6KKOQFyVdQwUAdF1p1aY
8DggH3cVeau14wQKd8nDtZ1Xdk80bncaYTdvmrpTUT9RPpXAtMQgl+kmEODDGeRB
2Sb30UvyoaTDtQXFvuJlhcspgGHW14e6yCX+hXG70mZjUkkLHWgAYKM8J /w8Khwu
gqeCEJjrS1oyfLGPXDkAxC9xtb3+v2DdAEO]j8xCWg/hvleSrYh1SBXmU1zHyHHVE
yieOb6nD

----- END CERTIFICATE-----

This certificate has been verified for the following usages:

SSL Server Certificate

Issued To
Common Name (CN)
Organization (O)
Organizational Unit (OU)
Serial Number

Issued By
Common Name (CN)
Organization (O)
Organizational Unit (OU)

Validity Period
Issued On

Expires On
Fingerprints

SHA-256 Fingerprint

SHA-1 Fingerprint

www.facebook.com

Facebook, Inc.

<Not Part Of Certificate>
0C:6F:C8:59:57:FA:1F:5F:C9:67:2C:9F:E6:5C:DB:E6

DigiCert High Assurance CA-3
DigiCert Inc

www.digicert.com

11/15/10
12/3/13

BBA912B4FE2F 2688 7D 790B C4 2F 7A98 7B
C8D81C21B190C4465B C3 1A 2C5B 6F D2 31

630884E279CB1107F1FB8A6B11A64D 1B
1476 3F 8E

‘ ¥ Close |

X.509 certificate: real example

Version: 3 (0x2)
Serial Number:
0c:6f:.c8:59:57:fa:1f:5f:.c9:67:2c:9f.€6:5c:db:eb
Signature Algorithm: sha1WithRSAEncryption
Issuer: C=US, O=DigiCert Inc, OU=www.digicert.com, CN=DigiCert High Assurance CA-3
Validit
Not yBefore: Nov 15 00:00:00 2010 GMT
Not After : Dec 2 23:59:59 2013 GMT
Subject: C=US, ST=California, L=Palo Alto, O=Facebook, Inc., CN=www.facebook.com
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)
Modulus #1024 bit):
00:¢1:df:7d:63:41:bd:c4:e4:fa:65:33:13:78:d5: (... cut...) 0b:38:d6:82:00:23:dd:63:75
Exponent: 65537 (0x10001)

X509v3 extensions: (cut)
X509v3 Subject Key Identifier:
AA:57:4A:33:B6:EC:D5:6E:81:13:A6:36:5E:F4:7B:43:58:F3:8F:44
X509v3 Subject Alternative Name:
DNS:www.facebook.com, DNS:facebook.com
X509v3 Key Usage: critical
Digital Signature, Key Encipherment
X509v3 Basic Constraints: critical
CA:FALSE
X509v3 Extended Key Usage:
TLS Web Server Authentication, TLS Web Client Authentication

Signature Algorithm: sha1WithRSAEncryption
25:33:5e:90:3f:ad:02:fe:de:92:d2:9e:12:f7:ef.16:6a:8d: (... cut...) 8e:6f:a9:c3

Certificate Signing Request

A certificate signing request (also CSR or certification request)
IS @ message sent from an applicant to a certificate authority
in order to apply for a digital identity certificate

The most common format for CSRs is the PKCS#10
specification

Operations:

— the applicant first generates a key pair, keeping the private key
secret

— the applicant generates a CSR contains information identifying
herself (X.509 subject field), optional X.509 extensions (e.g. key
usage: RSA authentication for web servers) and the public key
chosen by the applicant

— The CSR may be accompanied by other credentials or proofs of
identity required by the certificate authority, and the certificate
authority may contact the applicant for further information

X509v3 extensions

= An X.509 v3 certificate contains an
extension field that permits any number of

additional fields to be added to the
certificate

= Certificate extensions provide a way of
adding information such as alternative
subject names and usage restrictions to
certificates

Some standard extensions

Authority Key Ildentifier
— The authority key identifier extension provides a means of identifying the public key
corresponding to the private key used to sign a certificate
Subject Key Identifier
— The subject key identifier extension provides a means of identifying certificates that
contain a particular public key
Key Usage
— The key usage extension defines the purpose (e.g., encipherment, signature,
certificate signing) of the key contained in the certificate.
— digitalSignature, nonRepudiation, contentCommitment, keyEncipherment ,
dataEncipherment, keyAgreement, keyCertSign, cRLSign, encipherOnly, decipherOnly
Subject Alternative Name

— The subject alternative name extension allows identities to be bound to the subject of
the certificate. These identities may be included in addition to or in place of the
identity in the subject field of the certificate

Extended Key Usage

— This extension indicates one or more purposes for which the certified public key may
be used, in addition to or in place of the basic purposes indicated in the key usage
extension.

— TLS WWW server authentication, TLS WWW client authentication, Signing of
downloadable executable code, Email protection, Timestamping

See http://tools.ietf.org/html/rfc5280 for the complete list

Certificate Revocation List

Various circumstances may cause a certificate to become invalid prior to the
expiration of the validity period

— change of name, change of association between subject and CA (e.g., an employee
terminates emPonment with an organization), and compromise or suspected
compromise of the corresponding private key.

Under such circumstances, the CA needs to revoke the certificate

CA periodically issuing a signed data structure called a certificate revocation
list (CRL)

A CRL is a time-stamped list identifying revoked certificates that is signed by
a CA or CRL issuer and made freely available in a public repository.

When a certificate-using system uses a certificate that system not only

checks the certificate signature and validity but also acquires a suitably
recent CRL and checks that the certificate serial number is not on that CRL.

Advantage: CRLs may be distributed by exactly the same means as
certificates themselves, namely, via untrusted servers and untrusted
communications.

One Icilmitation: time granularity of revocation is limited to the CRL issue
period.

Class 3

Certificate Revocat

Version 1

(

Signature Algorithm:
US/0O=VeriSign, Inc./OU=VeriSign Trust Network/OU=Terms of use at https://www.verisign.com/rpa (c)04/CN=VeriSign

Issuer: /C=
Code Signin
Last Update
Next Update

Revoked Certificate

Serial Number:
Revocation
Serial Number:
Revocation
Serial Number:
Revocation
Serial Number:
Revocation
Serial Number:
Revocation
Serial Number:
Revocation
Serial Number:
Revocation
Serial Number:
Revocation
Serial Number:
Revocation
Serial Number:

Signature Algor

66:4d:80:b8:
6a:bc:36:50:
07:5e:06:59:
8c:c6:2f:9e:
10:a2:07:dc:
54:fb:4f:19:
b5:43:ca:d4:
68:6£:82:24:

0a:90:63:13

CRL example

ion List (CRL):
0x0)
shalWithRSAEncryption

g 2004 CcA

: Apr 16 21:00:01 2013 GMT

: Apr 26 21:00:01 2013 GMT

S:
0100E327CDC8D80E5F8C3D9D74D67BD8
Date: Apr 11 09:53:52 2006 GMT
0100FCC2A0CD5DDOC6D36EB564C55E93
Date: Dec 10 18:07:34 2004 GMT
010642D833388AE94906A89BDA5A135A
Date: May 22 20:25:03 2006 GMT
0112135685183DDF2698DD70F54B5FFE
Date: Dec 23 17:35:14 2004 GMT
012466647BD00FA2EBC4ACDB125A4B49
Date: Jul 27 18:21:05 2005 GMT
01270B1F50C703546BFE14AB93692B9B
Date: Nov 14 11:47:04 2008 GMT
012A6DC9A9DBE1F01BE424EE65B76977
Date: Jan 13 16:28:26 2005 GMT
0134D37F26F1F593EF97280D56F56244
Date: Jul 17 18:43:18 2006 GMT
013EC6686061D86E5A4D93564950B1C7
Date: Oct 27 22:28:50 2006 GMT
013FA1A72104BDEF8B945AAD0625DEAF

ithm: shalWithRSAEncryption
fc:4b:75:22:d1:6e:79:26:c0:
6c:lb:dc:79:f0:f3:a9:ec:16:
6f:1d:b3:c2:b7:bd:66:ee:0c:
67:4f:63:d2:8e:e3:e4:9b:51:
fd:c8:8c:£1:13:79:45:77:74:
79:73:25:5d:6d:ac:b4:3b:c3:
4£:96:86:78:95:36:7e:e5:06:
88:91:8b:10:bd:09:7b:a6:£9:

Let’s build our own certification authority

OPENSSL X509 TUTORIAL

OpenSSL

= OpenSSL is a cryptography toolkit implementing the Secure Sockets Layer
(SSL v2/v3) and Transport Layer Security (TLS v1) network protocols and
related cryptography standards required by them

— www.openssl.org

= Main component
— Cryptography library: 1ibcrypto
— SSL/TLS protocol library: 1ibssl
— openssl program
= The openssl program is a command line tool for using the various
cryptography functions of OpenSSL's crypto library from the shell. It can be
used for
— Creation and management of private keys, public keys and parameters
— Public key cryptographic operations
— Creation of X.509 certificates, CSRs and CRLs
— Calculation of Message Digests
— Encryption and Decryption with Ciphers
— SSL/TLS Client and Server Tests
— Handling of S/MIME signed or encrypted mail
— Time Stamp requests, generation and verification

Create a CA and sign certificate
request with openssi|

= Typical workflow

Generate the RSA key pair for our CA

Create a self-signed certificate for our CA
Generate the RSA key pair for the web server
Generate a CSR for the web server

Sign the CSR with the CA private key

akwbh -~

= Very simple Lab-pki
— Create the CA and issue the certificates (single level
certification ROOT _CA->certificate) with openssl| from the

host machine

— Create a netikit lab (Lab9-pki) with just one VM (with a TAP
10.0.0.1,10.0.0.2) that will be our test web server

— Setup Apache2 for a HTTPS website

Create the CA keys

Prepare our CA folder and the serial number file

marlon@marlon-vmxbn:~/Labs$ mkdir cgrlCA

marlon@marlon-vmxbn:~/Labs$ cd cgrlCA/
marlon@marlon-vmxbn:~/Labs/cgrlCAS$S echo -e "01\n" > serial

Create the CA key pair

marlon@marlon-vmxbn:~/Labs/cgrlCAS$ openssl genrsa -out ca.key 2048
Generating RSA private key, 2048 bit long modulus

e is 65537 (0x10001)

Generate the CA self signed
certificate

This command will create a self signed certificate, i.e. a certificate where the
issuer and the subject are the same entities

marlon@marlon-vmxbn:~/Labs/cgrlCAS openssl req -new -x509 -days
3650 -key ca.key -out ca.crt

You are about to be asked to enter information that will be
incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name
or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default wvalue,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:IT

State or Province Name (full name) [Some-State]:

Locality Name (eg, city) []:Rome

Organization Name (eg, company) [Internet Widgits Pty Ltd]:cgrlCA
Organizational Unit Name (eg, section) []:

Common Name (eg, YOUR name) []:cgrl-cert-authority

Email Address []:calcgrl.edu

Let’s take a look at our first
certificate

marlon@marlon-vmxbn:~/Labs/cgrlCA$ openssl x509 -in ca.crt -text -noout
Certificate:
Data:
Version: 3 (0x2)
Serial Number:
b6:ef:85:6f£:71:e5:68:bb
Signature Algorithm: shalWithRSAEncryption
Issuer: C=IT, ST=Some-State, L=Rome, O=cgrlCA, CN=cgrl-cert-authority
emailAddress=calcgrl.edu
Validity
Not Before: May 24 10:44:00 2012 GMT
Not After : May 22 10:44:00 2022 GMT
Subject: C=IT, ST=Some-State, L=Rome, O=cgrlCA, CN=cgrl-cert-authority/
emailAddress=calcgrl.edu

Subject Public Key Info:
Public Key Algorithm: rsaEncryption

Public-Key: (2048 bit)

Modulus:
00:al:2c:fl:bf:a2:af:4a:3a:6e:£f7:e7:13:b5:42:
32:4c:2c:d2:3b:0£:09:68:d6:67:6e:af:05:23:a8:
59:eb:ef:85:19:7c:75:18:

Let’'s make the web server keys
and CSR

Create the subject’s (i.e. our web server) key pair

marlon@marlon-vmxbn:~/Labs/cgrlCAS$ openssl genrsa -out server.key 1024
Generating RSA private key, 1024 bit long modulus

s

++++++
e is 65537 (0x10001)

Create the subject’'s CSR. This certificate will be signed with the CA’s private key

marlon@marlon-vmxbn:~/Labs/cgrlCAS$ openssl req -new -key server.key -out
server.csr

Country Name (2 letter code) [AU]:IT
State or Province Name (full name) [Some-State]:

Locality Name (eg, city) []:Rome

Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (eg, section) []:

Common Name (eg, YOUR name) []:testssl.cgrl.edu

Email Address []:testssl@cgrl.edu

CSR signing

This command will sign the CSR with the CA’s private key

marlon@marlon-vmxbn:~/Labs/cgrlCAS$ openssl x509 -req -in server.csr -out
server.crt -shal -CA ca.crt -CAkey ca.key -CAserial serial -days 3650
Signature ok

subject=/C=IT/ST=Some-State/L=Rome/O=Internet Widgits Pty Ltd/
CN=testssl.cgrl.edu/emailAddress=testssll@cgrl.edu
Getting CA Private Key

Dump the signed certificate

marlon@marlon-vmxbn:~/Labs/cgrlCA$ openssl x509 -in server.crt -text -noout
Certificate:

Data:
Version: 1 (0x0)
Serial Number: 3 (0x3)
Signature Algorithm: shalWithRSAEncryption
Issuer: C=IT, ST=Some-State, L=Rome, O=cgrlCA, CN=cgrl-cert-authority/

emailAddress=calcgrl.edu

Validity
Not Before: May 24 10:50:25 2012 GMT
Not After : May 22 10:50:25 2022 GMT
Subject: C=IT, ST=Some-State, L=Rome, O=Internet Widgits Pty Ltd,
CN=testssl.cgrl.edu/emailAddress=testssl@cgrl.edu
Subject Public Key Info:
Public Key Algorithm: rsaEncryption

Adding X509v3 extensions

When you sign a certificate set the following two options:
-extfile [file name]
-extensions [section name]

In opnessl configuration file (in /etc/ssl/openssl.conf) we already have 4 standard section defined:
usr cert, v3 req, v3 ca, crl ext

In addition, you can define extra sections
[section name]
Optionl=valye

OptionN=value

See https://www.openssl.org/docs/apps/x509v3 config.html for extensions

marlon@marlon-vmxbn:~/Labs/CAS$ openssl x509 -req -in server.csr -out
server.crt -shal -CA ca.crt -CAkey ca.key -CAserial serial -days 3650 -
extfile /etc/ssl/openssl.conf -extensions usr cert

Signature ok

subject=/C=IT/ST=Some-State/L=Rome/O=Internet Widgits Pty Ltd/
CN=testssl.cgrl.edu/emailAddress=testssll@cgrl.edu

Getting CA Private Key

How to protect our web server

HTTPS SERVER WITH
APACHE2

Let's configure Apache2

We are going to create a virtual host for the website “testssl.cgrl.edu” in the
netkit lab “Lab9-pki”

Configuration file, keys and certificate already in server:root/
Webserver media file and index.html in server:/var/www/testssl|

Set-up everything properly before enabling the new site
= Configuration file testssl.cgrl.edu goes into /etc/apache2/site-available
= Keys and Certificate in the proper directory (see the conf file)

Run the following commands:

server# a2ensite testssl.cgrl.edu Enable our HTTPS web site

server# a2enmod ssl Enable Apache2 SSL module

server# /etc/init.d/apache2 start Start Apach§2
(or “restart” if already up)

testssl.cgrl.edu config file

IfModule
<VirtualHost
DocumentRoot

ServerName testssl.cgrl.edu:443
ServerAdmin testssl@cgrl.edu

SSLEngine On

SSLCipherSuite HIGH:MEDIUM

SSLProtocol all -SSLv2

SSLCertificateFile /etc/apache2/ssl/server.crt
SSLCertificateKeyFile /etc/apache2/ssl/server.key

SSLCertificateChainFile /etc/apache2/ssl/ca.crt
SSLCACertificateFile /etc/apache2/ssl/ca.crt

<Directory >
Options
AllowOverride
Allow from from all
Order

</Directory>

</VirtualHost>

</IfModule>

onnect to the server

=] Terminal on@ma P aq 1ty Thu 27 ﬂ

: Add Security Exception
. : You are about to override how Firefox identifies this site.
E Legitimate banks, stores, and other public sites will not ask you
File Edit View History Bookmarks Tools Help S
@ Untrusted Connection Location: ’ https://testssl.cgrl.edu/ ‘ [Get Certiﬁcate]

42 : [https://testssl.cgrl.edu g Certificate Status
This site attempts to identify itself with invalid information.

Unknown Identity

This Connection |S_ Certificate is not trusted, because it hasn't been verified by a recognized
authority.

You have asked Firefox to connec
connection is secure.

Certificate Viewer:"testssl.cgrl.edu”
Normally, when you try to connel
W are going to the right place. Howe

Could not verify this certificate for unknown reasons. What Should I Do?

Issued To Ifyou usually connect to this site
Common Name (CN) testssl.cgrl.edu impersonate the site, and you sh
Organization (O) Internet Widgits Pty Ltd

Organizational Unit (OU) <Not Part Of Certificate> Getme out of herel Gonfirm Security F_xceptionl
A

Serial Number 03 A o
Technical Details

o Permanently store this exception

Issued By

Common Name (CN) cgrl-cert-authority testssl.cgrl.edu uses an invalid security certificate.
Organization (O) cgricA U k . W n A
Organizational Unit (OU) <Not Part Of Certificate> The certificate is not trusted because the issuer certificate is not trusted.

validity (Error code: sec_error_untrusted_issuer) O C u rse e)

Issued On 05/24/2012 .
Expires On 05/22/2022 I Understand the Risks

Fingerprints If you understand what's going on, you can tell Firefox to start trusting this site's identification. Even if
SHA1 Fingerprint D2:FE:69:85:33:94:D8:56:DA:64:8B:DA:31:F8{ you trust the site, this error could mean that someone is tampering with your connection.

DS RS e R R e e e (P Don't add an exception unless you know there's a good reason why this site doesn't use trusted

idgp

Add Exception...

You can also manually and permangntly add
the certificate before trying to conngct

Note: append the following line to the file /etc/hosts on the host machine
testssl.cgrl.edu 10.0.0.2

TLS handshake

CLIENT |[Client Hello —>| SERVER
Server Hello

<
< Certificate)
<
<

Server Key Exchange Mandatory

Certificate Request

Server Hello Done

/\

N

Certificate > _

: Optional and/or only
Client Key Exchange > at session start-up
Certificate Verify >
Change Ciper Spec > \
Finished > ,>t_

< Change Cipher Spec art encryption
< Finished

< Application Data >

TLSv1 trace with our certificate

v nk tap marlon [Wireshark1.6.2] -
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

v] Expression...

Time Source Destination Protocol Length Info i
40.000473 10.0.0.1 110.0.0.2 TLSV1 235 Client Hello |‘
60.011022 10.0.6.2 10.0.6.1 TLSV1 1514 Server—Hell

.011170 0.0.2 10.0.0.1 844 Certificate, Server Key Exchange, Server Hello Done
10 0.013859 10.0.0.1 110.0.0.2 : 264 Ctient Key~Exchange, Change Cipher Spec, Encrypted Handsha
11 0.019209 10.6.6.2 110.6.0.1 TLSv1 348 Encrypted Handshake Message, Change Cipher Spec, Encrypted
12 0.019530 10.0.0.1 110.0.0.2 TLSV1 439 Application Data
16 0.076438 10.60.0.2 110.6.0.1 TLSv1 678 Application Data, Application Data, Application Data, Appl
110.0.0.1 110.0.0.2 TLSV1

17 0.080485

455 Application Data

Certificates Length: 1750 ISsuer

v Certificates (1750 bytes)
Certificate Length: 769
> Certificate (pkcs-9-at-emailAddress=testssl@cgrl.edu,id-at-commonName=testssl.cgrl.edu,id-at-organizatior
Certificate Length: 975
> Certificate (pkcs-9-at-emailAddress=ca@cgrl.edu,id-at-commonName=cgrl-cert-authority,id-at-organizationN:
» TLSvl Record Layer: Handshake Protocol: Server Key Exchange
B TISv1 Recard | aver: Handshake Pratncnl: Server Helln Nnne

GRS GRCERCIECROD 660 66 d9 60 66 db6 00 63 6 1 ocoooc > SubJeCt
0010 v ¢ d 30 82 01 e5 0 01 © D 0d 06 09 2a 86 0
Reassembled TCP (2173 bytes)
(O Handshake protocol message (ssl.han... : Packets: 222 Displayed: 41 Marked: 0 Dropped: 0 : Profile: Default 4

HTTP plaintext auth over TLS

Safest way to authenticate via HTTP, better then digest auth
You first create a secure channel with the authenticated web server

You send authentication credential in clear (from the HTTP point of view)
but inside the secure (encrypted/authenticated) TLS channel

The test website already has the following password protected directory

<Directory
AuthType Basic
AuthName

AuthUserFile /etc/apache2/.htpasswd
Require valid-user
</Directory>

To try it you need to grant access to a new user, for example: uid “007” password “jamesbond”

server# htpasswd -c -m /etc/apache2/.htpasswd

007
New password:

Client authentication via X509
certificate

= The client may authenticate itself with a X509 certificate

= To do so we need to
1. Configure the web server to force SSL client authentication

<Directory
SSLVerifyClient require

SSLVerifyDepth 1
</Directory>

2. Create a client certificate and configure the web browser to
use it (exported it in PCKS 12 format. NOTE: to use it with
firefox you need to enable SSL renegotiation. With (my)
chrome (v. 15.0.874.106 (Developer Build 107270 Linux)
Ubuntu 11.10) it's already OK)

server# openssl genrsa -out client.key 1024
server# openssl req -new -key client.key -out client.csr
server# openssl x509 -req -in client.csr -out client.crt -shal -CA

ca.crt -CAkey ca.key -CAserial serial -days 3650
server# openssl pkcsl2 -export -in client.crt -inkey client.key -

out client.pl?2

